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This paper demonstrates that within the context of the generalized theory of capillar- 
ity, the free energy remains invariant against an arbitrary shift of the dividing surface for 
a general surface geometry. The Gibbs adsorption equation is used to illustrate the 
importance of being able to shift the dividing surface. The mathematical proof makes use 
of an equation describing the change of free energy for a shift of the dividing surface, 
derived in an independent development of a hydrostatic approach to capillarity. 

1. I n t r o d u c t i o n  

Capillarity is an important  phenomenon in colloid and surface chemistry. 
Many biological problems, such as simple models for lipid vesicles [1], and techno- 
logical problems, such as soil physics and recovery of petroleum [2] are closely 
linked with the study of  capillarity. Other examples which illustrate the significance 
of capillarity include microemulsions [3,4] and surfactant micelles [5,6]. 

Gibbs [7] first developed formulations to study capillary phenomena at surfaces 
of  arbitrary shape. The dividing surface is a fundamental element of  the Gibbsian 
model. As shown by the solid line in Fig. 1, the properties of  the two bulk fluid 
phases change continuously from one to the other through an "interfacial" region. 
This interfacial region has a finite thickness, and thus, the phenomenon is three 
dimensional in nature. However, since this thickness is typically many orders of  
magnitude less than the dimensions of the surface area, the interfacial region is 
modelled as two dimensional by placing a dividing surface within the region. The 
conservation requirements for mass, entropy and energy are satisfied by assigning 
excess quantities to the dividing surface so that the bulk fluid phases can be consid- 
ered homogeneous up to the dividing surface as shown by the dotted line in Fig. 1. 

It is easy to see that an arbitrary shift in the dividing surface position will change 
the extensive properties of the bulk fluid phases, and hence the surface excess quan- 
tities in order to guarantee the conservation requirements. 

Thus, previous researchers have realized the advantage of  choosing a specific 
position for the dividing surface to simplify their mathematical problems. A well 
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Fig. 1. Continuous change of bulk properties from Phase (a) to Phase 03). (Density is used here as 
an example.) 

known example to demonstrate the desirability of shifting the dividing surface is 
the Gibbs adsorption equation [8]: 

F -  RT daa ' (1) 

where 1  ̀is the excess surface density per unit area of a solute, a is the activity of 
the solute, 7 is the surface tension, T is the temperature and R is the universal gas 
constant. Here the dividing surface was chosen so that the excess surface density of 
the solvent is zero. 

To accommodate any arbitrary geometry of an interface, Gibbs included curva- 
ture terms in his theory. However, he then removed all curvature dependence from 
analytical consideration by: (i) considering only moderately curved surfaces, and 
(ii) placing the dividing surface in a unique position which he called the "surface of 
tension" [7,9]. Hence, this classical theory suffers from a central restriction: curved 
interfaces have their dividing surface fixed at the surface of tension. It should be 
noted that in Adamson's derivation ofeq. (1) [8], the specific case of a flat interface 
was treated. This was necessary due to the assumptions of the Gibbsian model. 

Many interesting cases of capillary phenomena, however, involve curved inter- 
faces. Common examples include liquid-vapour and liquid-liquid interfaces. In 
these instances, in the context of the classical theory, the dividing surface is 
restricted to the surface of tension position [7,9]. 

In the case of a curved interface for the adsorption equation given above, if we 
leave the dividing surface in the surface of tension position, we obtain [8] 

d7 + 1`1RTda l  + v2RT da2 = 0, (2) 
al a2 

where 1,2 are the two components of the system. 
It is clear from the above equation that we do not have an explicit solution for 

1̀ 1 or 1"2 and that we can not proceed unless we shift the dividing surface, and set the 
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excess surface density for one component equal to zero. This shift, however, is not 
permitted within the framework of the classical theory. 

Kondo [10] attempted to overcome the limitations of the Gibbsian theory by 
introducing a special curvature term into the classical fundamental equation 

dU = TdS + tMN +TdA + ( o ~ ) A d R ,  (3) 

where U is the internal energy, S is the entropy, # is the chemical potential, N is 
the number of moles, A is the surface area and R is the radius of a drop with a spheri- 
cal interface. 

The term [&y/OR], also called a "formal derivative", accounts for a change in 
the value of 7 due to the arbitrary choice of the dividing surface, but not due to the 
change associated with an increase in the radius of the physical interface [9]. Hence, 
eq. (3) obviously allows for the dividing surface to be shifted, but in our opinion, 
the formal derivative is an ad hoe term, without fundamental mathematical and 
thermodynamic meaning. The intensive parameters of the fundamental equation 
are defined as partial derivatives of the internal energy with respect to the asso- 
ciated extensive parameter. For example, T is defined as OU/OS. The formal deri- 
vative, however, does not follow this simple definition. It is clear that formulations 
based on the classical theory should adhere to Gibbsian thinking. Terms such as the 
formal derivative cannot arise rigorously from the classical fundamental equation 
[11]. 

Boruvka and Neumann [12] developed a "generalized" theory of capillarity by 
retaining curvature terms in their fundamental equation. Later, Rotenberg et al. [9] 
studied the prospect of shifting the dividing surface in both the classical and gener- 
alized theory of capillarity. They showed that the dividing surface was restricted to 
the surface of tension position in the classical theory. In the case of the generalized 
theory, the dividing surface was free to be shifted. The paper by Rotenberg et al. 
illustrated the capacity to shift the dividing surface in the generalized theory by con- 
sidering two simple geometries, namely spherical and cylindrical. The present 
paper extends their work to show that the generalized theory can accommodate a 
shift of the dividing surface for any arbitrary geometry. 

2. Generalized theory of  capillarity considerations 

The generalized theory of capillarity retains both curvature terms in the funda- 
mental equation via two scalar differential invariants of the surface, i.e. the first 
(mean) curvature, J, and the second (Gaussian) curvature, K, defined by 

J = C1 + (72, (4) 

K = c l .  G ,  (5) 
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where C1 = 1/R1 and C2 = l/R2, and where Rl and R2 are the principal radii of  
curvature. 

Hence the fundamental  equation for surfaces per unit area can be written as 

U = U[S, pl , . . .  ,Pi,. . .  ,pr, J ,g] ,  (6) 

where u is the surface internal energy density, s is the specific entropy, p is the den- 
sity and i is the ith component  of the system (1 ~< i ~ r). 

Analogous to the surface tension, 7, defined as OU/OA, the temperature, T, as 
Ou/Os and the chemical potential, #i, as Ou/Opi, the corresponding intensive param- 
eters for the mean and Gaussian curvatures are 

where Cj is the first bending moment  of the interface and Cx is the second bending 
moment  of  the interface. The associated extensive parameters of J and K for a finite 
surface area, A, are defined as 

where J is the total mean curvature and /C is the total Gaussian curvature. 
Al though the quantities J and/C are not used as frequently as J and K, they have 
been discussed in differential geometry literature [13]. 

It has been shown [14] that neither the Gibbs, nor the Helmholtz potentials are 
as well-suited to study capillary systems, as is the free energy (or grand canonical 
potential), fL Since capillary problems involve conditions of  thermal and chemical 
equilibrium, it is more convenient to use the free energy potential rather than the 
internal energy. 

The specific free energy of a dividing surface, w, can be defined [14] as 

w = ,,/+ CjJ+ CKK. (11) 

In a two phase capillary system, when gravity is neglected, and thus all intensive 
parameters are constant, the overall free energy (comprised of  the total surface and 
bulk free energies), f~, is written as 

f ~ = f f A w d A - f f f A P d g = ' y A + C ~ J + C x l f . - A P g ,  (12) 

where A p  is the pressure difference across the interface and V is the volume. 
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Rotenberg et al. [9] compared the free energy expression for the virtual work of 
the internal forces in a dividing surface, derived from the hydrostatic formulation, 
to the expression obtained from the thermodynamic approach to capillarity. They 
obtained the following expressions: 

"T = f ~rTEd)~, (13) 
J 

f 
Cj = -- J A¢rTEd,,k, (14) 

(15) 

where are  is the tangential excess stress tensor component about the dividing sur- 
face (at ,~ = 0) and ,~ is the distance from the dividing surface. 

Using eqs. (13) to (15) and by considering two arbitrary positions of the dividing 
surface, Rotenberg et al. then determined some relations describing the interdepen- 
dence of % Cj and Cx. In addition, they showed that the dependency on the stress 
tensor component c~r~ cancelled out, and that a shift of the dividing surface caused 
changes in % C j, Cx and Ap. Using the expressions which describe these changes 
and eq. (12), they derived the following expression describing the difference in the 
overall free energy of the capillary system for two positions of the dividing sur- 
face: 

~(2) _ ~(1) = ,),(1) (A(2) _ A(1) + AAff(2) + AA2KJ2)) 

+ 41)(,7(2) _ j ( l )  + 2AMC(2)) 

+ C(K1)(K~(2) __ /~(1)) 

+ _ _ ½ ( 1 6 )  

where (2) denotes the final position of the dividing surface, (1) denotes the initial 
position of the dividing surface and AA is the displacement (distance between) of 
the dividing surface. 

Rotenberg et al. [9] proceeded to illustrate the invariance of free energy by con- 
sidering specific geometries of cylindrical and spherical bubbles. In the case of the 
cylindrical geometry the total Gaussian curvature, E, is equal to zero, rendering 
the second bending moment, Cr, immaterial. However, the first bending moment, 
C j, is still necessary in the free energy expression, permitting the dividing surface to 
be shifted [9]. For the spherical geometry both principal radii of curvature are iden- 
tical, resulting in a free energy expression which is specific and not applicable to 
any other geometry. Hence, the generalization of the geometry is a non-trivial mat- 
ter; the proof which follows extends the work of Rotenberg et al. [9] by showing the 
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invariance of  free energy when shifting the dividing 
geometry. 

surface for a general 

3. Invar iance  o f  the free energy for an arbitrary shift o f  the dividing surface 
for a general  surface geomet ry  

Consider the elemental volume shown in Fig. 2. As depicted, it should be noted 
that the two principal radii of  curvature (R1 and R2) are offset by a distance, D; and 
that  the displacement (distance between) of  the dividing surface A)~ is equal to - 6 z  
for both R1 and R2. The initial area is xoYo, and the area after the shift is 
X(2)y (2) ---~ (X0 q- ~X)(Y0 -~- ~Y). 

Using the principles of similar triangles: 

dx dz 
- (17) 

x z 

and if we consider that initially, at z = z0, x = x0, after integrating we get 
x0 

x = - - z .  (18) 
zo 

Similarly, for y, 

dy dz 
-- (19) y z ' '  

where z' corresponds to the second principal radii of curvature, R2, which is offset 
from R1 by D and hence 

z' = z + D.  (20) 

R1 

Area after 
the shift 

Fig. 2. Elemental volume: R1 and R2 are the principal radii of curvature (R2 is offset from RI by a dis- 
tanee D). Initial area is xoYo. The dividing surface is shifted by a distance 6z. The area after the shift is 

(xo + 6x)(yo + 6y). The origin is indicated by O. 
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Again,  if we consider that  initially at z = Z¢o, y = yo, then 

Yo i (21) 
Y = 7 o  ° • 

It  has been shown elsewhere [15]  that  the variat ion of  the total  Gaussian curva- 
ture, i.e. 6E, for an arbitrary shift in the dividing surface, is equal to zero. Hence  it 
follows that/(;(1) =/C(2) 

In the p r o o f  that  follows, each term on the right hand  side ofeq .  (16) will be dealt  
with individually, start ing with the first term on the right hand  side ofeq.  (16): 

,),(U (A (2) _ A (1) + A/~j'(2) _}_ A/~2K~(2)) = ,),(1)(x(2)y(2) _ xoYo - -  A z J  (2) q- Az2K~(Â)). 

(22) 

I f  all surface propert ies are un i form or constant  at each point  on the surface, then 
J a nd /C  may  be replaced by JA and KA, respectively. Ro tenberg  et al. derived 
eq. (16) under  this condit ion,  and hence, we make  this subst i tut ion and  proceed: 

,),(1) (x(Z)y(2) _ x O Y O  - -  A z J ( 2 ) A  (2) -k- AzZK(I)A (1)) 

= {x0yO(zo 
[zo f0 + Az)(z'° + Az) - xoYo 

xo 
~i;(zo + Az)(  4 + Az) + Az2K(1)xoYo] . (23) 

z0 Z 0 J 

As s tated above, J --- C1 + C2, K = C1 • C2, C1 = 1/R1 and C2 = 1/R2. We will 
use this no ta t ion  and that  of  Fig. 2 (i.e. R1 -- z and R2 = f ) .  Also, since the two 
principal  radii (R1 and R2) are offset by a distance D, f -- z + D. Using  these rela- 
t ions we obtain,  for the right hand  side ofeq.  (23): 

"~O)x°Y°[( z 2 + D ( z ° + A z ) + 2 z ° A z + A z 2  (zo + D) 1 

Az(zo + /Xz÷zo + O ÷  Az)(zZ+O(zo+Az) +2zoAz÷ Az 2) ( 1 ) (  1 )1 
- zo(zo + D)(zo + Az)(zo + D + Az) + 'xz~ 7 

= ,7(1)xoy ° [:Aoo + D(zo + Az) + 2z0AZzo(zo ++ Az2D) - zo(zo + D) + Az 2 

(2Azz0 + 2Az 2 + AzD)(~o + Dzo + D,Xz + 2zoAz + Az~)] 
z~o + ~  7 Xz)(zo 7 b-V~ ] 

[(Zo 2 + Dzo + OAz + 2zoAz + Az 2 - z~ -- zoO + Az2)(zo + Az)(zo + D + Az) 
,7(l)xoYo [ zo(zo + D)(zo + Az)(zo + D + Az) 

(2Azzo + 2A2  + AzD)(~ + Dzo + DAz + 2zoAz + Az2) 1 
zo(zo + D)(zo + ~z)(zo + D + ,',z) J 

= 0. (24) 
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Proceeding to the second term of the right hand side ofeq. (16), 

By making the same substitutions as above, we find 

(25) 

(26) 

Upon  further simplification of the right hand side ofeq. (26), 

(27) 

Moving to the third term of the right hand side of  eq. (16), we again invoke the 
finding ofGaydos  et al. [15] (i.e. that 6/C = 0) and see that this term vanishes. 

Finally we proceed to the last term of the right hand side ofeq. (16). We find that 
this expression involves V (1) - V (2). Here we have to determine V = V(z)  and inte- 
grate to find A V, that is 

(28) 

We find, from Fig. 2, that if second order terms are neglected ~V = A6z.  Also, using 
eqs. (18), (20) and (21) we find 

(29) 
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Upon integration and appropriate substitutions, 

A V = [- xoYo .] (6Azz2 + 6Az2zo + 2Az3 + 6OzoAz  + 3DAz2). 
[6zo(zo + D)J 

Replacing this into the expression 

A p (  v (~) - v(2t - A ~ ( 2 / -  ½/X~2j(~> _ ½/X~3jC(2~ ) 

f --(6Az~ + 6Az2zo -t- 2Az 3 q- 6DzoAz  + 3DAz 2) 
= APxoYo . 6zo(zo + D) 

A z ( z  2 + Dzo + D A z  + 2zoAz + Az 2) 
z o ( z o + D )  

1 Az2/'(2Zo + 2Az + D) (~  + Dzo + DAz + 2zoAz + Az2)'~ 
2 \ (zo + zXz)(zo 7~7Xz-~o)-@o7~) /~ 

(30) 

1 (  A z  3 '~] (31) 
+5 \zo(zo + o ) /  J " 

Simplifying the right hand side ofeq. (31), 

A Pxo Yo 
[--6~Az -- 6Azazo -- 6DzoAz - 3DAz 2 + 6Az~ + 6AzDzo + 6DAz 2 + 12zoAz 2 + 6Az 3 

X [ 6zo(zo + D) 

( s-8Go-; 5-; ~-V;Z£ T ~ / j  
APxoYo [DAz 2 q- 2zoAz 2 + 2Az 3 Az2(2zo + 2Az + D)(z 2 + Dzo + DAz + 2zoAz + zSz2)] 

2 [ zo(zo + D) (zo + Az)(zo + D + Az)(zo)(zo + D) J 
(32) 

With additional mathematical manipulations on the right hand side of the equation 
above, 

APxoYo [(DAz 2 + 2zoAz 2 + 2Az3)(z0 + Az)(Zo + D + Az) 

2 [ (zo + Az)(zo + D + Az)(zo)(zo + D) 

(2Az2zo + 2Az 3 if- Az2D)(z  2 + Dzo + D A z  + 2zoAz + Az2).] 

(zo + Az)(zo + o + zXz)(zo)(zo + o) ] 
= 0 .  (33) 

Hence, what we have shown is that 

f~(2) _ f~(1) = 0 (34) 
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for an arbitrary shift of the dividing surface for a general surface geometry. 

4. Conclusions 

This paper extends previous studies of Boruvka and Neumann [12] and of 
Rotenberg et al. [9]. The former introduced the generalized theory of capillarity, 
while the latter showed that this theory permits shifts of the dividing surface. The 
study by Rotenberg et al. confirmed the generality of this theory, since in the classi- 
cal theory any position of the dividing surface other than the position of pure ten- 
sion is prohibited. Rotenberg et al. illustrated their findings by considering only 
spherical and cylindrical geometries. The present study has considered a shift of the 
dividing surface for an arbitrary surface geometry and has shown that the general- 
ized theory of capillarity allows freedom of placement of the dividing surface with- 
out violating the free energy conservation requirement of the system. 
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